GROBNER-SHIRSHOV BASES FOR IRREDUCIBLE sp4-MODULES
نویسندگان
چکیده
منابع مشابه
Gröbner–Shirshov Bases for Irreducible sln+1-Modules
In [10], inspired by an idea of Gröbner, Buchberger discovered an effective algorithm for solving the reduction problem for commutative algebras, which is now called the Gröbner Basis Theory. It was generalized to associative algebras through Bergman’s Diamond Lemma [2], and the parallel theory for Lie algebras was developed by Shirshov [21]. The key ingredient of Shirshov’s theory is the Compo...
متن کاملGrobner-shirshov Bases for Representation Theory
In this paper, we develop the Gr6bner-Shirshov basis theory for the representations of associative algebras by introducing the notion of Gr6bner-Shirshov pairs. Our result can be applied to solve the reduction problem in representation theory and to construct monomial bases of representations of associative algebras. As an illustration, we give an explicit construction of Gr6bner-Shirshov pairs...
متن کاملGröBner-Shirshov Bases for Dialgebras
In this paper, we define the Gröbner-Shirshov bases for a dialgebra. The composition-diamond lemma for dialgebras is given then. As a result, we obtain a Gröbner-Shirshov basis for the universal enveloping algebra of a Leibniz algebra.
متن کاملGröbner-Shirshov Bases for Lie Algebras: after A. I. Shirshov
In this paper, we review Shirshov’s method for free Lie algebras invented by him in 1962 [17] which is now called the Gröbner-Shirshov bases theory.
متن کاملParametrised Gröbner-Shirshov Bases
We consider the problem of describing Gröbner-Shirshov bases for free associative algebras in finite terms. To this end we consider parametrised elements of an algebra and give methods for working with them which under favourable conditions lead to a basis given by finitely many patterns. On the negative side we show that in general there can be no algorithm. We relate our study to the problem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2008
ISSN: 0304-9914
DOI: 10.4134/jkms.2008.45.3.711